Sheet (4)

- **2.1.** Verify Eqs. (2.7) and (2.8), that is,
 - (a) x(t) * h(t) = h(t) * x(t)
 - (b) $\{x(t) * h_1(t)\} * h_2(t) = x(t) * \{h_1(t) * h_2(t)\}$
- 2.2. Show that
 - (a) $x(t) * \delta(t) = x(t)$
 - (b) $x(t) * \delta(t t_0) = x(t t_0)$
 - (c) $x(t) * u(t) = \int_{-\infty}^{t} x(\tau) d\tau$
 - (d) $x(t) * u(t t_0) = \int_{-\infty}^{t t_0} x(\tau) d\tau$
- 2.5. Compute the output y(t) for a continuous-time LTI system whose impulse response h(t) and the input x(t) are given by

$$h(t) = e^{-\alpha t}u(t)$$
 $x(t) = e^{\alpha t}u(-t)$ $\alpha > 0$

2.6. Evaluate y(t) = x(t) * h(t), where x(t) and h(t) are shown in Fig. 2-6, (a) by an analytical technique, and (b) by a graphical method.

2.14. The system shown in Fig. 2-17(a) is formed by connecting two systems in cascade. The impulse responses of the systems are given by $h_1(t)$ and $h_2(t)$, respectively, and

$$h_1(t) = e^{-2t}u(t)$$
 $h_2(t) = 2e^{-t}u(t)$

- (a) Find the impulse response h(t) of the overall system shown in Fig. 2-17(b).
- (b) Determine if the overall system is BIBO stable.

Sheet (4)

2.27. Show that

(a)
$$x[n] * \delta[n] = x[n]$$
 (2.130)

(b)
$$x[n] * \delta[n - n_0] = x[n - n_0]$$
 (2.131)

(c)
$$x[n] * u[n] = \sum_{k=-\infty}^{n} x[k]$$
 (2.132)

(a)
$$x[n] * \delta[n] - x[n]$$

(b) $x[n] * \delta[n - n_0] = x[n - n_0]$
(c) $x[n] * u[n] = \sum_{k = -\infty}^{n} x[k]$
(d) $x[n] * u[n - n_0] = \sum_{k = -\infty}^{n - n_0} x[k]$
(2.132)

2.30. Evaluate y[n] = x[n] * h[n], where x[n] and h[n] are shown in Fig. 2-23, (a) by an analytical technique, and (b) by a graphical method.

